Motor coil

As common as they are, electromagnetic devices are not as widely understood. An electromagnet uses an electrical current to generate a magnetic field. The strength of that field is directly proportional to the level of current supplied to the magnet, and the field’s polarity can be flipped by changing the direction of the electrical current. Electromagnets serve a variety of purposes in many day-to-day technologies, particularly in electromechanical and electronic devices.

We’ll cover some of the most common uses of electromagnets in the world today, both in consumer products and for industrial applications, making many modern technologies possible.


Real World Electromagnet Applications in Electronics

Most people don’t directly see electromagnets in their daily life, but they are no less often used. Electromagnets are found in countless consumer and commercial products, including:

  • TVs
  • Audio Equipment
  • Computers
  • Cars
  • Elevators
  • Copy Machines
  • MRI/CT Scan Machines

Real World Electromagnet Applications in Power Generation

Generating power involves converting sources of primary energy into electric power. An electric generator stores mechanical energy in the form of electrical energy by using a wire coil in a magnetic field. This is done by rotating the coil, which induces a current, and industrial-scaled applications accomplish this with a large, rapidly spinning turbine to produce massive amounts of electrical current.

This electrical energy can be stored and converted back into mechanical energy for a variety of purposes – such as running a motor. To do so, an electromagnet is supplied with a reverse current, creating a magnetic field that causes the magnet’s coil to spin, along with anything connected to it.

Electromagnets make it possible to convert mechanical energy into electricity, and then back into mechanical energy. The electromagnetic device that converts these energies is called an actuator, which consists of a stationary and a moving component (such as a rotor), where the magnetic fields produce torque and force that can be harnessed. This same principle makes it possible to use an electromagnet’s induction coil to measure the magnetic field itself, making electromagnets capable of functioning as sensors.

To summarize, electromagnets are used in four different ways in the power generation process:

  • Generators
  • Motors
  • Actuators
  • Sensors

Real World Electromagnet Applications in Medicine

Medical devices such as Magnetic Resonance Imaging machines (MRIs), use magnets thousands of times more powerful than your average kitchen magnet to generate signals in the radio-frequency range, which the device then measures and translates into images. This results in highly detailed pictures of bones, organs, and various tissues.

Magnets are also applied in some cancer treatments, where a doctor injects magnetically sensitive fluid into the area around the tumor and uses a powerful magnet to generate heat in the body. The goal is to kill the cancer cells without harming the healthy tissues.

These are just two common medical uses of magnets – others include:

  • Scanners
  • X-ray equipment
  • Dialysis machines
  • Disinfectant dispensers
  • Electromagnetic therapies

Real World Electromagnet Applications in Aerospace

Aerospace engineers have developed an almost entirely separate field of magnetics. Specialized uses involve sending finely controlled current and voltage to receiving systems to maintain altitude and other flight dynamics. In reverse, this also enables them to track the location and flight path of various aircraft and devices.

Much of aerospace engineering would not be possible without electromagnetic technology. Electromagnets power many standard and specialized aerospace devices, such as:

  • Flight control covers for both commercial and combat aircraft
  • Missile programs
  • Aircraft loudspeakers
  • Traveling-wave tube (TWT) radar
  • Permanent Magnet (PM) generator rotor assemblies
  • Fuel pumps
  • Flow regulators
  • Cryogenic magnets suited for space environments
  • Magnetic holders for aircraft seats
  • Position-calibration and speed sensors
  • Air-compressor components
  • Motorized generators
  • Tachometer generators

Electromagnets from Custom Coils

Not many technologies are as ubiquitous to modern life while remaining largely hidden from direct experience as electromagnets. Just as electromagnetic devices have driven much of modern technology forward without being often credited as such, Custom Coils, Inc. has been quietly and dutifully driving the electromagnetic industry forward since 1978.

With a highly customer-centric business model, our expert engineers work closely with every client to design and manufacture precision-engineered electromagnets for a wide variety of end uses. For any questions or to let us know about your electromagnetic needs, don’t hesitate to request a quote or contact us.


Custom Coils Inc. designs and manufactures custom specialty coils for a variety of industries and applications. For even the most challenging projects, our experts can deliver high-quality design conceptualization, prototype development, testing, and production. This page will explain how electromagnetic coils work, their different types and applications, and important design considerations when creating custom solutions.

What are Electromagnetic Coils?

An electromagnetic coil, also known as an electric coil or inductor, is an electrical conductor containing a set of conductive wires wrapped around a specified shape and size. This can be a self-supporting (air core) design or include a specified core (ie. iron, ferrite) . Electrical coils are simple electronic components that provide inductance in an electromagnetic circuit.

There are many coil types to meet the needs of various equipment. Electromagnetic coils can vary by wire gauge, length, coil diameter, core material, and other factors. Since electromagnetic coils are powered by electricity, they can be turned on and off easily. Their magnetic strength can be altered by increasing or decreasing the electricity that flows around their core.

How Do Electromagnetic Coils Work?

Electromagnetic coils consist of conductive wire wrapped in a specific size and shape, producing a magnetic field. The magnetic field grows stronger when there are more turns of wire on the coil. Electromagnetic field strength is determined by the number of amp turns, the material selection of the core, and the strength of current. Removing electrical input disables the magnet.

When added to a wire coil, certain core materials can increase the strength of the magnetic field. Ferromagnetic materials—cobalt, nickel, iron, and steel—can amplify a denser magnetic field for the coil.

Electromagnetic Coil Applications

Electromagnetic coils vary in size, shape, and material depending on their application. While there are many industries that use electromagnetic coils, three industries in particular rely on coils for critical applications.



Electromagnetic components are vital to many types of medical equipment, including heart rate monitors, Radiation therapy systems, MRI systems and more. Diagnostic equipment—such as electrocardiogram (EKG) and electroencephalogram (ECG) machines—also require electromagnetic coils.



The military depends on electromagnetic coils for missile defense, protecting allied signals, and jamming enemy signals. Electromagnetic coils also apply to high-velocity electromagnetic rail guns.



Aerospace applications for transformers, inductors, and other electromagnetic parts must be highly precise and adhere to stringent guidelines. Electromagnetic aircraft launch systems, for example, must successfully launch aircraft from carriers.

Leave a Reply

Your email address will not be published. Required fields are marked *